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Lactoferrin is an iron-binding glycoprotein present in epithe-
lial secretions, such as milk, and in the secondary granules of
neutrophils. We found it to be present in fractions of milk
protein that stimulated osteoblast growth, so we assessed its
effects on bone cell function. Lactoferrin produced large,
dose-related increases in thymidine incorporation in primary
or cell line cultures of human or rat osteoblast-like cells, at
physiological concentrations (1–100 �g/ml). Maximal stimula-
tion was 5-fold above control. Lactoferrin also increased os-
teoblast differentiation and reduced osteoblast apoptosis by
up to 50–70%. Similarly, lactoferrin stimulated proliferation
of primary chondrocytes. Purified, recombinant, human, or
bovine lactoferrins had similar potencies. In mouse bone mar-

row cultures, osteoclastogenesis was dose-dependently de-
creased and was completely arrested by lactoferrin, 100 �g/ml,
associated with decreased expression of receptor activator of
nuclear factor-�B ligand. In contrast, lactoferrin had no effect
on bone resorption by isolated mature osteoclasts. Lactofer-
rin was administered over calvariae of adult mice for 5 d. New
bone formation, assessed using fluorochrome labels, was in-
creased 4-fold by a 4-mg dose of lactoferrin. Thus, lactoferrin
has powerful anabolic, differentiating, and antiapoptotic ef-
fects on osteoblasts and inhibits osteoclastogenesis. Lactofer-
rin is a potential therapeutic target in bone disorders such as
osteoporosis and is possibly an important physiological reg-
ulator of bone growth. (Endocrinology 145: 4366–4374, 2004)

MILK IS A RICH biological fluid that functions to pro-
vide nutrition at a time of very rapid skeletal growth

and development in the neonate. Because of this, it contains
many growth regulators in addition to the simple substrates
necessary for infant development. Therefore, we assessed the
effects of milk proteins on bone cell growth, and found that
a number of fractions of whey protein have growth-stimu-
latory effects in primary cultures of osteoblasts. With a view
to determining the identity of the growth-promoting mole-
cules within whey protein, we used HPLC to identify the
major proteins in the active fractions. We found that the
glycoprotein, lactoferrin, was present in many of these frac-
tions. On this basis, we hypothesized that lactoferrin stim-
ulates osteoblast growth.

Lactoferrin is an 80-kDa iron-binding glycoprotein that
belongs to the transferrin family of proteins (1). It is produced
by many exocrine glands and, consequently, is widely dis-
tributed in body fluids including tears, saliva, bile, pancreatic
fluid, vaginal secretions, semen, and milk (2). Lactoferrin is
also a major constituent of the secondary granules of neu-
trophilic leukocytes, from which it is released during acute

inflammation (3). Serum levels of lactoferrin in healthy sub-
jects range from 2 to 7 �g/ml and are predominantly neu-
trophil derived, but during inflammation and sepsis its local
concentrations may be much higher (4). It acts as an iron
chelator, which may contribute to its antimicrobial activity
(5), but it also has effects on cell growth and differentiation
(6), embryonic development (7), myelopoiesis (8), endothe-
lial cell adhesion (9), cytokine (10, 11) and chemokine (12)
production, regulation of the immune system (13), and mod-
ulation of the inflammatory response (14). Its effects on bone
have received little attention.

The present studies address the skeletal effects of lacto-
ferrin in vitro (using assays of osteoblast growth, differenti-
ation and survival, osteoclast development and activity, and
bone organ culture) and in vivo. These studies establish lac-
toferrin as a potent novel anabolic factor in osteoblasts,
which also reduces bone resorption and increases bone mass
when administered in vivo. These findings pose important
questions regarding the role of lactoferrin in bone physiol-
ogy, both during growth and in adulthood, and provide a
potential target for drug development in the therapeutics of
osteoporosis.

Materials and Methods
Osteoblast-like cell culture

Osteoblasts were isolated from 20-d fetal rat calvariae, as previously
described (15). Briefly, calvariae were excised and the frontal and pa-
rietal bones, free of suture and periosteal tissue, were collected. The
calvariae were sequentially digested using collagenase and the cells

Abbreviations: FBS, Fetal bovine serum; OPG, osteoprotegerin;
RANKL, receptor activator of nuclear factor-�B ligand; TRAP, tartrate-
resistant acid phosphatase; TUNEL, terminal deoxynucleotidyl trans-
ferase-mediated deoxyuridine triphosphate nick end labeling.
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from digests 3 and 4 were collected, pooled, and washed. Cells were
grown in T75 flasks in 10% fetal bovine serum (FBS) (Gibco BRL, Life
Technologies, Auckland, New Zealand)/DMEM (Gibco, Invitrogen
Corp., Auckland, New Zealand) for 2 d and then changed to 10% FBS/
MEM (Gibco, Invitrogen) and grown to 90% confluency. Cells were then
seeded into 24-well plates in 5% FBS/MEM for 24 h. Cells were growth
arrested in 0.1% BSA (ICP, Auckland, New Zealand) for 24 h. Fresh
media and experimental compounds were then added for a further 24 h.
Cells were pulsed with [3H]thymidine 4 h before the end of the exper-
imental incubation. The experiment was terminated and cell counts or
thymidine incorporation assessed. There were six wells in each group,
and each experiment was repeated three or four times.

Cultures of primary human osteoblasts were prepared using normal
human trabecular bone obtained from 50- to 70-yr-old patients under-
going knee or hip arthroplasty. Osteoblasts were grown from enzyme-
treated bone chips, using a modified method of Robey and Termine (16).

Cell lines were grown to 80% confluency in 5% fetal calf serum-
supplemented media and then seeded into 24-well plates for prolifer-
ation assays, as described for primary rat osteoblasts. Human osteoblast-
like cell line (SaOS-2) cells were seeded at a density of 7.0 � 103 cells/cm2

and cultured in MEM. Murine bone marrow stromal cell line (ST2) cells
were seeded at 1.4 � 104 cells/cm2 in DMEM.

Apoptosis assay

For the terminal deoxynucleotidyl transferase-mediated deoxyuri-
dine triphosphate nick end labeling (TUNEL) assay, primary rat osteo-
blasts were seeded into 8-well chamber slides (Lab-Tek, Nalge Nunc
International, Naperville, IL) in 5% fetal calf serum/MEM (3 � 104

cells/chamber) and incubated for 24 h. Media were changed to 0.1%
BSA/MEM and the cells incubated overnight. Fresh media and treat-
ments were added and cells incubated a further 24 h. Cells were fixed
in 2% paraformaldehyde for 15 min and washed thoroughly in PBS
before being permeabilized with 1% Triton X-100 (BDH Chemicals Ltd.,
Poole, UK)/PBS for 5 min. Cells were rinsed thoroughly and then a
modified TUNEL assay performed using the Dead End Colorometric
TUNEL system (Promega Corp., Madison, WI) according to manufac-
turer’s instructions. Results are expressed as the number of apoptotic
bodies per microscopic field. There were eight wells for each group, and
each experiment was repeated two to three times.

Bone nodule assay

Osteoblasts were isolated from 20-d fetal rat calvariae as described
above. Cells were grown for 48 h in 10% FBS/DMEM in T75 flasks. Cells
were then trypsinized (GIBCO, Invitrogen) and plated into 35-mm tissue
culture dishes at a density of 3.5 � 104 cells/dish in 15% FBS/�MEM
supplemented with 50 �g/ml l-ascorbic acid-2-phosphate (Sigma
Chemical Co., St. Louis, MO). When cells were confluent (approximately
5 d), media were changed to 15%FBS/�MEM supplemented with l-
ascorbic acid-2-phosphate and 10 mm �-glycerophosphate (Sigma-Al-
drich Co., St. Louis, MO), and test substances were added. These sup-
plemented media were changed twice weekly and test substances were
replaced. After 21 d the cells were fixed in neutral buffered formalin for
15 min, rinsed thoroughly with distilled water, and the cultures stained
for mineral using Von Kossa stain. The number and area of mineralized
bone nodules greater than 1 mm in diameter were quantified using
image analysis.

Chondrocyte culture

Chondrocytes were isolated by removing cartilage (full-depth slices)
from the tibial and femoral condyles of adult sheep under aseptic con-
ditions. Slices were placed in 5% FBS/DMEM and chopped finely with
a scalpel blade. Tissue was weighed and then incubated at 37 C in
pronase solution (0.8% wt/vol in 5% FBS/DMEM) for 90 min followed
by collagenase (0.1% wt/vol in 5% FBS/DMEM) for 18 h to complete the
digestion. The cells were isolated from the digest by centrifugation (5
min at 1300 rpm), resuspended in 5% FBS/DMEM, passed through a
nylon mesh screen of 90 �m pore size to remove any undigested frag-
ments, and recentrifuged. The cells were washed twice and seeded into
a 75-cm2 flask containing 10% FBS/DMEM and ascorbic acid (50 �g/ml).
The cells were incubated under 5% CO2/95% air at 37 C. Confluence was

reached within 7 d, at which time the cells were seeded into 24-well
plates at a density of 1.4 � 104 cells/cm2 in 5% FBS/DMEM � ascorbic
acid. Proliferation assays were performed as for primary rat osteoblasts.

Bone marrow culture

Bone marrow was obtained from the long bones of normal Swiss male
mice aged 4–6 wk, as previously described (15). Briefly, marrow cells
were cultured for 2 h in 90-mm petri dishes. Nonadherent cells were then
collected and grown in 48-well plates; 1,25 dihydroxyvitamin D3 (10�8

m) was added (d 0) to all wells except to negative controls. On d 2 and
4, cultures were fed by removing 0.5 ml medium from each well and
replacing with 0.5 ml fresh medium containing test substances and 1,25
dihydroxyvitamin D3. After culture for 7 d, tartrate-resistant acid phos-
phatase (TRAP)-positive multinucleated cells (containing three or more
nuclei) were counted in all wells. Each experiment had three wells in
which cells were grown on bone slices and checked for resorptive pits,
indicating that the TRAP-positive multinucleated cells in these cultures
were capable of resorbing bone. There were at least eight wells for each
group, and each experiment was repeated three or four times.

Mature isolated osteoclast culture

Rat osteoclasts were isolated from the long bones of 1-d-old neonatal
rats, as previously described (15). Briefly, an osteoclast-rich suspension
prepared by homogenizing the bone tissue was placed onto bovine bone
slices (9 mm2) in 96-well plates and incubated for 35 min to allow the
mature osteoclasts to settle. The bone slices were then placed in 12-well
plates (four slices per well) containing acidified media and incubated
with test substances or vehicle for 20 h. After incubation, the bone slices
were fixed and stained for TRAP. The number of TRAP-positive
multinucleated cells (containing more than three nuclei) on each bone
slice were quantified, the cells were removed by gentle scrubbing, and
then the bone slices were stained for 30 sec with toluidine blue. After
several washes in water, the bone slices were dried and assessed for the
pits excavated by the osteoclasts, using reflected light microscopy with
metallurgic lenses. The results for each bone slice were expressed as the
ratio of the number of pits to the number of osteoclasts. There were 6–12
bone slices in each group and each experiment was repeated two or three
times.

Real-time PCR

RNA for real-time PCR was prepared from human primary osteo-
blasts and mouse bone marrow cultures. The culture conditions were as
previously described for the proliferation assays and osteoclastogenesis
assays, but for RNA preparation the cells were plated in 6-well plates
at densities of 1.5 � 105 primary osteoblasts/well and 4 � 106 bone
marrow cells/well. Two wells were used for every experimental point.
Bovine lactoferrin (100 �g/ml) or vehicle was added, and cells were
harvested at the indicated time points after the beginning of treatment.
Total cellular RNA was purified from the cultures using RNeasy minikit
(Qiagen, Valencia, CA), and genomic DNA was removed using RNase-
free DNase set (Qiagen). Reverse transcription was carried out following
the previously published protocol (17), and cDNA was used for real-time
PCR. The primer-probe sets were purchased as Assay-on-Demand from
Applied Biosystems (Foster City, CA). Multiplex PCR was performed
with FAM-labeled specific probes [osteoprotegerin (OPG) and receptor
activator of nuclear factor-�B ligand (RANKL) from human and OPG,
RANKL, interferon-� and -�, IL-18, and TNF� from mouse)] and VIC-
labeled 18S rRNA probes according to the company’s instructions, using
ABI PRISM 7700 sequence detection system (Applied Biosystems). The
experiments were performed in triplicates and repeated three times with
similar results.

Bone organ culture

Mice were injected sc with 5 �Ci 45Ca at 2 d of age, and hemicalvariae
were dissected out 4 d later. Hemicalvariae were preincubated for 24 h
in medium 199 with 0.1% BSA and then changed to fresh medium
containing test substances or vehicle. Incubation was continued for a
further 48 h. To assess DNA synthesis, [3H]thymidine (0.6 �Ci/ml) was
added in the last 4 h of the incubation. The experiment was terminated,
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and both calcium release and thymidine incorporation were assessed.
There were five to seven hemicalvariae in each group, and each exper-
iment was repeated three or four times.

Culture media for all studies described above contained penicillin
(100 U/ml) and streptomycin (100 �g/ml).

In vivo study

Five groups of sexually mature male mice were given daily sc injec-
tions over the right hemicalvaria for a consecutive 5 d, as previously
described (18, 19). Three groups (n � 15) received one of three doses of
bovine lactoferrin (0.04, 0.4, or 4 mg), and a further two groups (n � 9)
received vehicle or BSA, 4 mg. The animals were killed 10 d after the last
injection. Fluorochrome labels were injected sc at the base of the tail on
d 1 (calcein), 5 (alizarin red), and 14 (calcein). Calvariae were excised,
fixed in 10% neutral-buffered formalin, dehydrated, and embedded in
methylmethacrylate resin. Sections were cut, mounted on gelatin-coated
slides, and histomorphometric indices measured using image analysis.

All animal procedures were approved by the Animal Ethics Com-
mittee of our institution.

Lactoferrin preparations

Bovine lactoferrin was isolated from fresh skim milk by cation ex-
change chromatography and gel filtration. Briefly, the milk at native pH
was passed through S Sepharose fast flow at 4 C and the bound proteins
eluted in steps with 0.1, 0.35, and 1 m NaCl, respectively. The 1 m NaCl
fraction containing lactoferrin was dialyzed and freeze dried. The re-
sulting material was then dissolved in 25 mm sodium phosphate buffer
(pH 6.5) and reapplied to the cation exchanger, which had been equil-
ibrated in the above buffer. Lactoferrin was eluted by application of a
salt gradient to 1 m NaCl in phosphate buffer and the recovered material
dialyzed and freeze-dried. Final purification of lactoferrin was achieved
by gel filtration through Sephacryl S300 in phosphate buffer and the
protein recovered as a dialyzed freeze-dried powder. Purity of the final
product was greater than 98% as assessed by resource reversed-phase
HPLC and mono-S HPLC (20).

Native human lactoferrin was prepared from breast milk as previ-
ously described (21) and fully saturated with iron by the addition of
ferric nitrilotriacetate. Full-length recombinant human lactoferrin was

expressed in baby hamster kidney cells, as described by Stowell et al. (22),
and was again used in its iron-saturated form. The degree of iron sat-
uration was determined from the spectral ratios A280/A466 and A412/
A466 (23), which have values of 20–22 and 0.70–0.74 for the fully iron-
saturated protein. The protein solutions were dialyzed exhaustively
against 0.05 m Tris-HCl (pH 8.0), 0.2 m NaCl, to remove any excess,
unbound, ferric iron before use.

Statistics

Data were analyzed using ANOVA with post hoc Dunnett’s tests. A
5% significance level is used throughout. Data are presented as means �
se, unless indicated otherwise.

Results
Lactoferrin stimulates proliferation and differentiation of
osteoblast-like cells

Lactoferrin produced a dose-related increase in thymidine
incorporation in primary cultures of rat osteoblast-like cells
at 24 h (Fig. 1A). This effect was present at concentrations of
lactoferrin that occur in vivo (1–100 �g/ml). The same range
of concentrations of lactoferrin stimulated proliferation in
the human osteoblast-like cell line, SaOS-2 (Fig. 1B) (al-
though the size of the effect was less in these transformed
cells) and the stromal cell line, ST2 (Fig. 1C). Comparable
effects were found in primary cultures of human osteoblasts
treated with bovine lactoferrin (Fig. 1D), and recombinant
human lactoferrin was possibly more potent at low concen-
trations in these cells, increasing thymidine incorporation
2-fold at 10 �g/ml (data not shown). With this exception, the
species of origin and method of preparation of the lactoferrin
did not substantially impact the extent of the proliferative
effect.

The above studies of lactoferrin action on osteoblast pro-

FIG. 1. Effects of bovine lactoferrin
(bLF) on cell proliferation (assessed
from thymidine incorporation) in pri-
mary cultures of rat osteoblast-like
cells (A); the human osteoblast-like cell
line, SaOS-2 (B); ST2, a stromal cell
line (C); and primary cultures of human
osteoblasts (D). Thymidine incorpora-
tion was measured during the last 4 h
of the 24-h incubation period. Data are
mean � SEM. *, Significantly different
from control (P � 0.05).
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liferation were complemented by an assessment of its action
on differentiation of these cells. These studies were per-
formed using 3-wk cultures of primary rat osteoblasts to
assess bone nodule formation, a process that involves bone
matrix deposition and mineralization, both of which are
functions of differentiated osteoblasts. Lactoferrin, dose-
dependently increased the number of nodules and the area
of mineralized bone formed (Fig. 2). These effects were sig-
nificant only at lactoferrin concentrations of 100 �g/ml and
greater, suggesting that the concentrations needed to stim-
ulate osteoblast differentiation are 10-fold greater than those
required to stimulate proliferation in these models.

Lactoferrin prevents apoptosis in osteoblast-like cells

Lactoferrin decreased apoptosis observed in response to a
24-h period of serum deprivation in cultures of primary rat
osteoblast-like cells, as judged by the number of TUNEL-
positive cells (Fig. 3). This effect was dose dependent and
evident at similar concentrations to those causing osteoblast
proliferation. In this assay, lactoferrin reduced osteoblast
apoptosis by up to 50–70%, indicating that lactoferrin not
only stimulates osteoblast activity but also acts as a potent
osteoblast survival factor.

Lactoferrin stimulates chondrocyte proliferation

In view of the mitogenic effects of lactoferrin on osteo-
blasts, its effect on proliferation of primary cultures of ovine
chondrocytes was also assessed (Fig. 4). At concentrations of
10 and 20 �g/ml, lactoferrin increased thymidine incorpo-
ration in these cells. These effects were comparable in mag-
nitude with those seen in osteoblasts.

Lactoferrin potently inhibits osteoclastogenesis but does not
affect mature osteoclast activity

The effects of lactoferrin on osteoclast development were
assessed in mouse bone marrow cultures. The number of

newly developed osteoclasts, assessed as multinucleated
cells staining positively for TRAP, was significantly de-
creased by lactoferrin at concentrations of 10 �g/ml and
greater (Fig. 5A). At 100 �g/ml, osteoclastogenesis was com-
pletely arrested. To determine at which stages of osteoclast
development lactoferrin acts, it was added to bone marrow
cultures from the outset or from d 2 (Fig. 5B). Both inter-
ventions reduced osteoclastogenesis, with more frequent ad-
ditions, resulting in greater effects. This implies that lacto-
ferrin acts on both preosteoclasts and more mature cells of
this lineage. However, lactoferrin had no effect on bone re-
sorption by isolated mature osteoclasts (Fig. 5C).

In light of this inhibition of osteoclastogenesis, the effects
of lactoferrin on expression of RANKL and OPG were as-
sessed in both osteoblasts and bone marrow cultures (Fig. 6).
Exposure of osteoblasts to lactoferrin resulted in reduced
OPG transcription and a transient increase in expression of
RANKL. When these experiments were repeated in bone

FIG. 3. Effect of bovine lactoferrin on apoptosis observed in response
to a 24-h period of serum deprivation in cultures of primary rat
osteoblast-like cells, as judged by the number of TUNEL-positive
cells. Data are mean � SEM. *, Significantly different from control (P �
0.05).

FIG. 2. Effect of recombinant human
lactoferrin (rhLF) on formation of bone
nodules in primary cultures of rat
osteoblast-like cells over a period of 3
wk. Cultures were stained for mineral
using Von Kossa stain, and the number
and area of mineralized bone nodules
were quantified. A shows nodule for-
mation in a control culture, whereas B
and C were exposed to lactoferrin 100
and 1000 �g/ml, respectively. Quanti-
fication of nodule number and area are
shown (D and E). Data are mean � SEM,
*, Significantly different from control
(P � 0.05).
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marrow cultures, OPG mRNA levels decreased at 96 h but
not at earlier time points. However, RANKL mRNA levels
were diminished at both 72 and 96 h. Similar studies of
expression of IL-18, TNF�, interferon-�, and interferon-� in
bone marrow cultures showed no changes in response to
treatment with lactoferrin (data not shown).

The effects of lactoferrin in neonatal mouse calvarial organ
cultures were consistent with those from isolated cell cul-
tures. Lactoferrin increased thymidine incorporation in cal-
variae (Fig. 7A), which previous studies in this model sug-
gest probably reflects increased proliferation of cells of the
osteoblast lineage (24), although effects on other cells in the
calvariae might also have contributed. However, bone re-
sorption, measured as 45Ca release, was unaffected (Fig. 7B).
Because there is virtually no bone marrow in the calvariae,
bone resorption in these explants predominantly reflects ma-
ture osteoclast function. Thus, this finding is consistent with
that in isolated mature osteoclasts, shown in Fig. 5C.

Lactoferrin increases bone growth in vivo

The anabolic effect of lactoferrin on osteoblasts and its
potent inhibition of osteoclastogenesis in vitro suggested that
it might have positive effects on bone mass in vivo. To address
this question, we administered lactoferrin, albumin, or ve-
hicle over the right hemicalvaria of adult male mice for 5
consecutive days. Vehicle and albumin did not differ in their
effects on any index so were pooled to provide a single
control group. Sections from representative bones from con-
trol and lactoferrin-treated animals are shown in Fig. 8. The
dramatic increases in bone area in the calvariae from lacto-
ferrin-treated animals, compared with control, can be ap-
preciated in these photomicrographs. New bone formation
(assessed by measuring the distance between the first fluo-
rochrome label and bone surface) was dose-dependently in-
creased by lactoferrin, such that the 4-mg dose induced
changes 4-fold greater than those observed in control animals
(Fig. 9A). Local injections of lactoferrin also increased the
mineral apposition rate (Fig. 9B) and the bone formation rate
(Fig. 9C).

Discussion

This study provides the first evidence that lactoferrin is a
promoter of osteoblast growth. In addition, it shows that
lactoferrin is an inhibitor of osteoclastogenesis in vitro and
increases local bone formation in vivo. Its effects on both the
proliferation and survival of osteoblasts are profound, being
far greater than those observed in response to several estab-
lished osteoblast growth factors that we studied in the same
in vitro assays. For instance, we found that maximal doses of
epidermal growth factor, TGF�, PTH, amylin, or insulin in-
crease thymidine incorporation in the primary osteoblast

FIG. 4. Effect of human lactoferrin (hLF) on proliferation of primary
cultures of ovine chondrocytes. Thymidine incorporation was mea-
sured during the last 4 h of the 24-h incubation period. Data are
mean � SEM. *, Significantly different from control (P � 0.05).

FIG. 5. A, Effects of bovine lactoferrin (bLF) on osteoclast develop-
ment in mouse bone marrow cultures. The number of newly developed
osteoclasts, assessed as multinucleated cells (MNCs) staining posi-
tively for TRAP, was significantly decreased by lactoferrin in con-
centrations of 10 �g/ml and greater (P � 0.05). B, Effects of bovine
lactoferrin, 50 �g/ml, on osteoclast development in mouse bone mar-
row cultures, according to time of addition (indicated on the x-axis).
Each group is significantly different from all other groups. C, Effect
of bovine lactoferrin on bone resorption by isolated mature osteoclasts
(assessed as resorption pits per osteoclast). There were no statistically
significant effects. Data are mean � SEM.
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cultures employed in this study by only 20–30% (25),
whereas maximal doses of lactoferrin produce 3- to 5-fold
increments. This growth-stimulating potency is comple-
mented by the capacity of lactoferrin to substantially reduce
osteoblast apoptosis. Again, this is much more dramatic than
the effects that we have seen with other factors, such as IGF-1,
which maximally decreases apoptosis in the TUNEL assay by
50% (26), compared with up to 70% with lactoferrin. In ad-
dition, lactoferrin promotes the function of differentiated
osteoblasts, as seen in the bone nodule assay. Thus, lacto-
ferrin acts to expand the pool of preosteoblastic cells by
exerting mitogenic and antiapoptotic effects as well as driv-
ing differentiation of precursors to produce a more mature
osteoblastic phenotype capable of promoting bone matrix
deposition and mineralization. Each of these activities is
likely to contribute to the potent effects on bone formation
that we observed in vivo after administration of lactoferrin.

The actions of lactoferrin on osteoclasts are strikingly dif-
ferent from those we observed in osteoblasts, in that it pro-
duces an almost total arrest of osteoclastogenesis in mouse
bone marrow cultures. Even though lactoferrin does not
influence the activity of mature osteoclasts, the inhibition of
osteoclastogenesis is still likely to result in a profound re-
duction in bone resorption. There is one previous report of
the effects of lactoferrin on bone resorption, in which Lorget
et al. (27) demonstrated that bovine lactoferrin reduces bone-
resorbing activity in a rabbit mixed bone cell culture. This

effect appeared to be mediated by an inhibition of the de-
velopment of mature osteoclasts and operated by a mecha-
nism independent of the RANK/RANKL/OPG system. The
finding in the present study, that lactoferrin reduces RANKL
expression in bone marrow cultures, could in part explain the
inhibition of osteoclastogenesis, although this will tend to be
counterbalanced by the effects of lactoferrin to also inhibit
expression of OPG. We did not find changes in the levels of
expression of other known regulators of osteoclastogenesis.
It should be noted that lactoferrin has previously been dem-
onstrated to inhibit the survival of progenitor cells in the
bone marrow (28), implying that it might also act earlier in
osteoclast development.

As a result of its effects on osteoblast growth, lactoferrin
produces substantial increases in local bone formation in
vivo, even with the very short-term exposure studied here.
The bone growth resulting from local lactoferrin injection is
considerably greater than we have found previously in re-
sponse to factors such as insulin, amylin, adrenomedullin,
C-terminal PTH-related peptide, calcitonin, or calcitonin
gene-related peptide in the same model (29–32). It is qual-
itatively different from the effects of PTH in this model,
which produces a powerful stimulation of bone resorption in
addition to its effect on formation (33). The magnitude of the
lactoferrin effect approaches those reported following local
injection of statins (34) or TGF� (35, 36). This potency is
further attested to by increases in new bone formation seen

FIG. 6. Effect of bovine lactoferrin on
RANKL and OPG expression in pri-
mary human osteoblast cultures (A and
B) and mouse bone marrow cultures (C
and D). Cells were incubated with lac-
toferrin at a concentration of 100 �g/ml
(‚) or with vehicle (�) for the duration
of the experiment. The expression level
of RANKL (A and C) and OPG (B and D)
were determined in triplicates using
multiplex real-time PCR. The relative
expression levels were normalized to
the level of 18S rRNA. Data are mean �
SEM. *, Significantly different from con-
trol (P � 0.05). For some data points,
error bars are not visible because they
are smaller than the size of the symbol.
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at sites remote from the injection site: there is evidence of
increased formation on the intracranial aspect of the cal-
variae (see Fig. 8B) and the contralateral, uninjected, hemi-

calvariae (data not shown), something we have not seen with
most other agents studied in this model. This anabolic po-
tency suggests that lactoferrin or its analogs should be ex-
plored as therapies for osteoporosis that can restore skeletal
strength because most current interventions merely arrest
further structural decline.

The present findings pose the question as to whether lac-
toferrin has a physiological role in skeletal development or
homeostasis. Lactoferrin is expressed biphasically in embry-
ogenesis (7). It appears first in the two- to four-cell embryo.
In the postblastocyst stage, its expression declines but in-
creases again dramatically in the latter half of gestation.
Therefore, it could play a significant role in the development
and function of chondrocytes and osteoblasts in the fetal
skeleton. Lactoferrin is present in high concentrations in
milk, particularly in colostrum, and it is likely that large
proteins such as lactoferrin can cross the neonatal gut and
enter the systemic circulation (37). Therefore, it is possible
that the anabolic actions of lactoferrin might continue into the
neonatal period. There is some evidence of biological effects
of orally administered lactoferrin in adults (38–40), al-
though, as yet, none that it impacts on bone. Indeed, milk
supplementation in human adults produces similar effects
on bone density to calcium supplementation alone (41, 42),
so it is unlikely that dietary lactoferrin has an important effect
on human skeletal health later in life. Lactoferrin plays an
important immunomodulatory function (14), decreasing the
secretion of a number of osteolytic cytokines such as TNF�
and IL-1� (11, 43, 44) and stabilizing mast cells (45). Thus, its
direct effects on the activity and development of bone cells
may be complemented by these cytokine-mediated effects. In
adult life, lactoferrin production is believed to be principally
influenced by stimuli causing inflammation because it is
present in the secretory granules of neutrophils. Therefore,
in inflammatory states, lactoferrin may play a role in coun-
terbalancing the catabolic effects on the skeleton of some of
the mediators of the inflammatory response, although bone
loss still predominates in most cases.

FIG. 7. Effects of bovine lactoferrin (bLF) on thymidine incorporation
(A) and bone resorption (B) (measured as release of 45Ca from pre-
labeled bones) in neonatal mouse calvariae. Thymidine incorporation,
probably mainly reflecting osteoblast proliferation, was increased,
but there was no effect on bone resorption. Data are mean � SEM. *,
Significantly different from control (P � 0.05).

FIG. 8. Photomicrographs of calvariae from animals treated with lactoferrin (4 mg) (A) and vehicle (B) for 5 d. Animals were killed 10 d later.
Fluorochrome labels used: green, calcein; red, alizarin. Two calcein labels were given 13 d apart. The increased new bone growth in the 13-d
period (i.e. distance between the two green calcein labels, arrowed) can be appreciated in the calvaria from the lactoferrin-treated animal. These
data are shown quantitatively in Fig. 9A. It can also be noted that there is new bone marrow formation occurring within the recently formed
bone in the lactoferrin-treated calvaria. New bone formed on the injected side of the lactoferrin calvaria is partially woven (asterisk). This was
seen only in the animals treated with the highest dose of lactoferrin and probably reflects the very high rate of matrix deposition. Horizontal
bar, 50 �m.
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Clearly, identification of the mechanism(s) by which lac-
toferrin acts on bone cells is important because of the potency
of the effects demonstrated, and this is being actively inves-
tigated by our group (45a). A putative lactoferrin receptor in
the intestine has been identified by Suzuki et al. (46), but we
have not been able to detect this receptor in primary rat
osteoblasts. However, we have presented preliminary evi-
dence that lactoferrin acts through low-density lipoprotein
receptor-related protein-1, a member of the low-density
lipoprotein-related receptor family (47). These receptors,

which are expressed in primary cultures of osteoblasts as
well as in osteoblastic cell lines, have a large number of
potential ligands (48), so they represent a novel pathway by
which many factors might impact on bone cell function.

Taken together, these data demonstrate that the naturally
occurring glycoprotein, lactoferrin, is anabolic to bone in
vivo, an effect that is consequent upon its potent proliferative,
differentiating, and antiapoptotic actions in osteoblasts and
its ability to inhibit osteoclastogenesis. Lactoferrin may
therefore have a physiological role in bone growth. In ad-
dition, it is a potential therapeutic target in bone disorders
such as osteoporosis and might have utility as a local agent
to promote bone repair.
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